
DØ Grid Production Workshop:
Introduction

Adam Lyon
Revision 1.2

1 Purpose for Workshop

The goal of this workshop is to lay the groundwork for a workable plan for DØ Grid
Production for the future. The SAMGrid team has recently announced winding down
development for SAMGrid, and so DØ has produced a challenging task list of items to
be completed before development ceases. Manpower is limited, and so the Computing
Division is looking for ways to assist the execution of the task list. To this end, the
purpose of the workshop is two fold.

1. Understand the system and its components at their current state
2. Obtain input for the future of the components in the context of the DØ task list.

This is a forward looking workshop; that is the purpose is not to debate past design
decisions, but rather to look to improving the future of production on the Grid. But it
is important to understand some of the expectations when designing this system, and
we’ll do that later in section 4.

It is also important to remember that the SAMGrid system has been very successful
for DØ. DØ has used this system for p17 and p20 reprocessing (billions of events each)
as well as an extremely successful emergency refixing effort (1.5 billion events processed
in 5 weeks; our first use of standard Grids for production). SAMGrid has been in use
for MC production for several years and produces millions of events per week. SAMGrid
fulfills the needs of DØ, but DØ needs increased capabilities.

2 The DØ Task List

2.1 Background

DØ relies on the “SAMGrid system” (note that “system” here means a collection of tools
including SAMGrid, d0reprotools, and D0RunJob) for all remote production processing,
including MC generation and reprocessing of data. Reprocessing involves running old
data through a newer version of the reconstruction program to take advantage of im-
proved algorithms and calibration constants. There is also a desire to use SAMGrid
for “primary processing” (that is do the first pass processing). The goal has been to
automate as much of these tasks as possible for opportunistic computing on the Grid.
Indeed many of the tasks involved with MC generation and Reprocessing are automated
with SAMGrid, but there are also many tasks which are still performed by hand. The



2

SAMGrid system is also currently not well suited to easily add functionality on short
time scales.

2.2 MC Production

Currently, the SAMGrid system is used for all standard MC production. Standard pro-
duction here means starting with running a Monte Carlo generator through creating
final merged thumbnail data files. There are additional functions that are desired and
make up this part of the DØ tasklist.

1. Currently, only the final merged thubmnails are stored to tape. There is a desire to
have intermediate files also written to tape as per user supplied parameters.

2. Currently, MC production with the system must start with running the MC gen-
erator. There is a desire to start at a later MC production step, using input files
already in SAM.

3. Currently, the trigger simulator is not part of the workflow, and so must be run by
hand on the analysis farm. There is a desire to add “trigsim” to the workflow.

4. There are also requests to make the system more adaptable to different production
paths.

2.3 (Collider Data) Production

The system right now can reprocess raw data and produce merged thumbnails. The
additional functions desired are as follows:

1. Perform skimming in production. Skimming involves reading in merged thumb-
nails and writing out many streams of thumbnails according to physics contents.
Right now this task is performed on the analysis farm.

2. Production of CAF trees. “CAF” (common analysis format) is the standard DØ root-
tuple format. Currently, this task is performed by hand on the analysis farm.

3. Run raw2sim on minbias files. This task creates files necessary for overlaying
underlying event information on top of MC events. Right now this task is performed
by hand on the analysis farm.

4. Merging recocert files. Recocert files are files of root-tuples for certification. Right
now, many small files are produced. There is a desire to merge them.

5. Merge more than one stream from Reco (dilepton, zerobias). The reconstruction
program produces these streams along with the main data. Right now the streams
are not merged, leading to small files.

6. Convert some data to AADST format. The B physics group uses a nonstandard
data format (AADST). There is a desire to do this conversion on the Grid.

7. Conversion of D0reproTools to Sam V7. Essentially, make the D0ReproTools (au-
tomated submission program) compatible with the latest version of the SAM code.
Some SAM code may have to change as a result.



DØ Grid Production Workshop Introduction (Rev. 1.2) 3

8. Standalone production of recocert output. Recocert is run with standard produc-
tion, but in case of failures, it may need to be run standalone. This is not done
currently in an automated way.

9. Resource brokering. SAMGrid can submit jobs to OSG, LCG and native sites. There
is no overall broker that manages submissions to these resources.

10. Fixing on the Grid. A “fixing” step involves processing old thumbnails into new
thumbnail files with a program with some improved algorithm or calibration. Fixing
is like reprocessing, but much faster since one does not have to go back to the Raw
data. DØ sucessfully performed fixing on the Grid in early 2006. As of this time,
there are no future plans for fixing, but it may be likely in the near future.

11. Analysis on the Grid. DØ does not do analysis jobs on the Grid.

3 Current State of the System

The system may be broken up into many components. This section is a very high level
overview. There are three major divisions: a) components that submit SAMGrid jobs
into the system, b) components and infrastructure that execute those jobs on the Grid,
and c) components to run the particular application.

3.1 Submission of SAMGrid Jobs

Figure 1 shows a high level diagram for submitting jobs into the system. A SAMGrid
job is a job to perform a particular task, such as process a SAM dataset with Reco
(Reprocessing), create Monte Carlo with a specific card file, or merge a particular set of
files. Reprocessing uses a set of scripts called d0reprotools to automate the creation
of SAMGrid jobs (MC has their own set of scripts for doing the same thing for MC jobs,
but that is not the topic of this workshop). Jobs are submitted using a SAMGrid client
program, which communicates with a SAMGrid submission node.

The Submission Node is responsible for routing the job to the right place (a par-
ticular native SAMGrid cluster or the OSG/LCG grids) as well as collecting monitoring
information about the jobs.

3.2 Executing jobs on the Grid

Figure 2 shows the components for executing jobs on the Grid. The submission node
hands the SAMGrid job to an OSG or LCG forwarding node or a head node of a native
SAMGrid cluster. This head/forwarding node determines the number of execution jobs
(depends on the application) and submits them to the batch system. A feature is that
the OSG and LCG grids are treated as batch systems, making this component quite
generic with respect to the location of the execution site. The “batch system” transfers
the execution jobs to worker nodes. The head/forwarding node can communicate job
status back to the submission node.



4

Figure 1: Components handing submission of SAMGrid jobs

The head/forwarding node also starts a SAM Data Handling project, if necessary.
The SAM Project Master process resides on this head/forwarding node.

3.3 Running the Application

Once an execution job lands on a worker node, an infrastructure for running the appli-
cation takes over as shown in Figure 3. The SAMGrid execution script is the overall job
script. D0RunJob handles the workflow and knows details of the DØ applications. The
SAMGrid execution script must also know details of the application in order to set up
D0RunJob. The applications are executed by D0RunJob.

As seen in the figure, a job may need information from services outside of the execu-
tion site.



DØ Grid Production Workshop Introduction (Rev. 1.2) 5

Figure 2: Components for executing jobs on the Grid



6

Figure 3: Components for running the Application



DØ Grid Production Workshop Introduction (Rev. 1.2) 7

4 Competing Expectations

I belive there are three competing expecations when writing software and tools for pro-
duction on the Grid.

1. Efficiency of operations
2. Expediency in bringing features into production
3. Ease of maintenance and use of generic tools

4.1 Efficiency of Operations

There is rarely time to spare when running production, therefore there is an expecta-
tion and indeed a demand that jobs use resources as efficiently as possible and run
as quickly as possible. The SAMGrid team has learned that to make the system effi-
cient, knowledge of the specific application needs to be embedded in various parts of
the system. For example, the submission node translates a SAMGrid job into execution
jobs based on the application type. The SAMGrid data handling code knows about the
application in order to optimize data delivery (e.g. jobs that need to be fed data rapidly
do not pull from the same data queue as jobs that need data more rarely). Adding appli-
cation specific code to improve efficiency makes the system more complicated and more
difficult to maintain and adapt to future needs.

4.2 Expediency in bringing features into production

Much of SAMGrid was written when standard Grid tools were in their infancy. Since DØ
needed to perform production tasks quickly, we developed our own Grid system. But
with the LCG and OSG forwarding nodes, we are migrating native SAMGrid execution
sites to the OSG/LCG Grids.

The need to bring features into production quickly has also lead to code that is
difficult to maintain, including the current division of responsibility between SAMGrid
and D0RunJob.

Again, since there is rarely spare time when running production, the lack of certain
features means that production is slower and less efficient than it would be otherwise.
The DØ task list shows the extent of desired features.

4.3 Ease of maintenance and generic tools

As mentioned above, the need for high efficiency has lead to application specific code
embedded in the system. The need to bring features into production quickly has lead to
code that is difficult to maintain. Furthermore, most of the development effort has gone
into making features work and then moving on instead of having them work easily or in
a way that is easily adaptable to new ideas.



8

4.4 The interplay of these expectations

The ease of maintenance expectation has more frequently been traded away in favor
of the other two, and now we are feeling the effects of those decisions. Can DØ forgo
some efficiency in favor of a more generic system? The desire to add new features as
quickly as possible is always present, but perhaps now is a good time to make other
changes that improve maintainability and ease of use even of these improvements do
not immediately lead to new features.

5 What can we do and how can you help?

The fact that the DØ task list is so long means (at least to me) that SAMGrid has really
just begun to automate production tasks and there’s much more to do. The fact that we
cannot add these features easily shows a deficiency in the system.

But it is important to keep in mind that the SAMGrid system is quite mature and
in constant use for production. The time scale for production at DØ is probably only
another 2-3 years. Drastic changes are perhaps unwise at this point.

But can we identify some less drastic changes that could lead to meaningful improve-
ments? Are there other experiences (CMS, CDF, ...) that can teach us what to do next?
Is there code and expertise that we can utilize?


	1 Purpose for Workshop
	2 The DØ Task List
	2.1 Background
	2.2 MC Production
	2.3 (Collider Data) Production

	3 Current State of the System
	3.1 Submission of SAMGrid Jobs
	3.2 Executing jobs on the Grid
	3.3 Running the Application

	4 Competing Expectations
	4.1 Efficiency of Operations
	4.2 Expediency in bringing features into production
	4.3 Ease of maintenance and generic tools
	4.4 The interplay of these expectations

	5 What can we do and how can you help?

